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NOTES AND UNIQUE PHENOMENA

for the measured data, the parameter b is a spe-ESTIMATION OF DURATION INDICES FOR
cific type of rate estimator, and the parameter t50REPEATED TENSIOMETER READINGS is the time value for which y/a � 1/2.

(2) Perform an ANOVA with the appropriate hy-
pothesis tests for the given experimental designDavid W. Meek* and Jeremy W. Singer
on the parameter or parameters of interest (e.g.,
Johnson and Milliken, 1983). An estimator de-Abstract
rived from the curve fit can also be calculated.

Regression analysis of repeated-measures data from plots in large For example, were the curve a crop growth model,
experiments is both labor intensive and time consuming. When dura-

some possible estimators of interest are relativetion estimates characterizing each individual repeated-measures series
growth rates at specific times, dry matter durationare of interest, numerical integrations are possible alternatives. This
for the whole season, or dry matter duration fornote evaluates a trapezoidal rule for estimating a wetness duration

index that is derived from repeated tensiometer readings of matric a specific portion of the season.
potential associated with plots in a recent soybean [Glycine max (L.)

Singer and Meek (2004) analyzed repeated measure-Merr.] study. Tensiometer repeated-measures series were randomly
selected from four of the treatments with their replications for a total ments of light interception and matric potential from
of 15 plots (of 420 total) associated with a 2-yr experiment. Regression- a 2 yr experiment on soybean. Some methods from
based duration estimates were developed and compared with those Davidian and Giltinan (1995) were initially used for this
derived using an unequally spaced trapezoidal rule. Equivalence be- purpose, but difficulties were encountered. The design
tween the two estimators was assessed based on multiple statistical

of the experiment resulted in instrumenting 120 plotsanalyses. The estimators were virtually identical by all criteria. The
per year except for the tensiometer measurements innumerical method is faster and easier to employ. Furthermore, the
the first year, which only had 90. The tensiometers,concept can be applied to other repeated measurements, and the results

may be useful as covariates in other analyses. however, were placed at two depths for each plot. So
420 time response curves needed to be developed and
selected. An automated procedure was developed to

The methodology for and analysis of data from re- model each time response for each plot’s repeated mea-
peated measures are important considerations in surements for a given year and candidate model. Com-

many agronomic and other scientific studies (e.g., Meek posite behavior of all the observed responses guided
et al., 1991; Wolfinger et al., 1993; Logsdon et al., 2002). the choice of suitable models. The output file included
A repeated option in mixed model procedures is now multiple performance indices and diagnostics (e.g., Meek
available in most well-known statistical software sys- et al., 1991; Logsdon et al., 2002). After examining the
tems (e.g., Littell et al., 1996). Moreover, new or adap- first year’s modeling results, some critical problems were
tive statistical methods for handling data from repeated evident; no one model worked adequately on all of the
measures are now available (Davidian and Giltinan, plots. Exploratory data analysis and graphs of the time
1995, 2003). Modeling the time trend (response) of mea- series for each variable revealed that individual time re-
surements associated with each individual experimental sponses could be very different from the composite re-
unit (like a plant, a plot, a specific sensor, etc.) allows sponse. For example, in comparing the tensiometer series,
the researcher to compare and contrast direct or derived all treatment combinations started out wet, and most com-characteristics of the time response, often with tradi-

pletely dried out by the end the sampling period; some,tional analysis of variance. The basic methodology is
however, retained water throughout the sampling period.as follows:
In general, the same model fit these latter ones very poorly.

(1) Fit the same curve form to each individual plot, Hence, we wanted to find an easier and better-fitted
for example, a logistic curve given by method.

Questions of seasonal differences among the treat-y � a/{1 � exp[b(t � t50)]}
ments were of interest for two different kinds of re-

where y is the dependent variable, t is time, and peated measures: light interception over the growinga, b, and t50 are the regression parameters. The
season and the previously mentioned tensiometer re-parameter a is an asymptote or the upper limit
cord. One way to determine a duration estimate for
every individual set of repeated measurements is whatUSDA-ARS, National Soil Tilth Lab., 2150 Pammel Dr., Ames, IA
was needed. This purpose of this paper is to propose50011. Received 21 Apr. 2004. *Corresponding author (meek@nstl.

gov). and evaluate a possible simple method as an alternative
to the procedure outlined in (1) above. For brevity,

Published in Agron. J. 96:1787–1790 (2004).
only data for tensiometer measurements from selected© American Society of Agronomy

677 S. Segoe Rd., Madison, WI 53711 USA treatments in Singer and Meek (2004) were used.
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Wetness Duration IndexMaterials and Methods
Let t be time measured in the number days after the startBackground on the Experiment and Data

of the sampling period. Let x(t) be the tensiometer reading
A 2-yr study evaluating biomass removal in no-tillage soy- (kPa) at time t. Without loss of generality, x(t) can be taken

bean was conducted in 2000 and 2001 on a Quakertown silt as positive with x(t) � 0 being wet and x(t) � 80 being dry.
loam soil (fine-loamy, mixed, mesic Typic Hapludult) at the Scale the reading from 0 to 1 to define a dimensionless wetness
Rutgers University Snyder Research and Extension Farm near index, y(t), as follows: y(t) � 1 � x(t)/80. Note the tensiometer
Pittstown, NJ (40�30� N, 75�00� W; elevation 170 m above sea instrument calibration allows x(t) to exceed �80 in some cases,
level). A three-factor treatment structure was arranged in but the values outside of 0 to �80 are not considered valid
a split-split-plot randomized block design. There were four (see, e.g., Young and Sisson, 2002). Observations for each
replications. The main factor was indeterminate soybean vari- sensor were discarded when the soil effectively dried out [i.e.,
ety, either Pioneer Brand ‘93B53’ (designated var � 1) or x(t) � 80]. Formally, this criterion is achieved by setting the
Agway ‘PK394NRR’ (var � 2). The first split was three row first occurrence to 0 and the remaining to missing values. Now
spacings—narrow (20 cm), intermediate (41 cm), and wide define the proposed wetness duration index, �W, with Eq. [1]:
(76 cm)—designated as 1 to 3, and the second split was no

�W � �
Final day

Starting day

y(t)dt [1]biomass removal (control) and biomass removal at V1 � V3 �
V6, V6 � R1, R1 � R4 � R6, and V1 � V3 � V6 � R1 �
R4 � R6 (Ritchie et al., 1994), designated as 1 to 5. In this �W is the definite integral of y(t) over the sampling period P
note, “treatment” refers to the unique combination of the (here in days, with P � final day � starting day). Hence, �W
three factors. The treatments are applied to the smallest exper- is in days. A numerical trapezoidal rule for unequally spaced
imental unit, formally referred to as a “sub-subplot” of the data is used to do the actual integrations, Eq. [2]:
design; for brevity and ease of reading, the term “plot” is used
throughout this note instead. Soybean was planted using no- �W � 1⁄2 �

n�1

i�1

[y(ti�1) � y(ti)](ti�1 � ti) [2]
tillage techniques on 16 and 21 May in 2000 and 2001, respec-
tively, at 518 700 seeds ha�1 using a no-tillage drill in the

where y and t are defined the same as in Eq. [1], n is thenarrow and intermediate row spacings and a no-tillage planter
number of observations, and i is the observation index. Thein the wide row spacing. Further details are provided in Singer trapezoidal rule was selected over alternative numerical inte-

and Meek (2004). gration methods for several reasons. Given that data are often
Details on the repeated measures are, of course, pertinent unequally spaced but with incremental changes that are grad-

to this paper. Tensiometers were inserted in each row at V1 ual relative to the entire period of observation, alternative
at depths of 30 and 60 cm (designated as Depths 1 and 2) in procedures (like adaptive quadrature methods, see, e.g., Sec-
all plots of three replications in 2000 and four in 2001. Soil tion 4.5 in Burden et al., 1981) are comparatively much more
water potential measurements were made frequently with a complicated but likely unnecessary. Note some important con-
pressure transducer until the soil water pressure exceeded ceptual features of such an index. Mathematically, if y(t) is
the air entry value of the porous cup (�80 kPa). In 2000, always 1, i.e., completely wet, then �W/P � 1. So �W, if scaled
measurements of matric potential of soil water started on 21 by P, can be considered the equivalent fraction of time a
June, 36 d after planting, and ended on 31 July. In 2001, plot is completely wet; otherwise, �W can be considered the
measurements started on 18 June, 28 d after planting, and corresponding number of days. Note that �W/P � �y�, where
ended on 9 August. While an effort was made to record mea- �y� is the expectation value for y(t) (i.e., �y� is the definition
surements at regular intervals, sometimes the schedule could for the mean of a continuous variable). If y(t) starts out wet
not be met. For almost all plots, the recording interval is not and then completely dries and stays that way for the rest of
always equally spaced throughout the sampling period. Also, the period, then �W is similar to a temporal scale of fluctuation
in plots where the soil had clearly dried out, no further mea- (see, e.g., Vanmarcke, 1983). Ideas for the overall approach

are similar to those in Meek (2001). Physically, �W is a cumula-surements were recorded; hence, within a season, not all the
tive or seasonal measure of exposure to soil water.individual series are of equal length. Thus, in 2000, 29 repeated

measurements were included in the longest individual period
of record; in 2001, the corresponding number was 40. Evaluation Procedure

Four treatments were randomly selected from all data sets
To evaluate the �W estimates via Eq. [2], we assumed thatincluding years and depths. Hereafter, the treatments are ref-

the tensiometers were well calibrated (one meaning of unbi-erenced by an identification code defined by the concatenation
ased) and that the calibrations did not drift during the experi-of the biomass removal, variety, and row-spacing integers. The
ment. Henceforth, we refer to bias as a systematic error inselected codes were 121 from Year 1 and Depth 1, 112 from the �W estimates via Eq. [2] to those estimated from a referenceYear 2 and Depth 2, 113 from Year 2 and Depth 1, and method—here, the regression-based �W estimates. For the Eq.

423 from Year 2 and Depth 2. The first selection had three [2] �W estimates to be sound, two conditions need to be estab-
replications; the remainder all had four (designated 1 to 4). lished. First, the Eq. [2] �W estimates are reasonably equivalent
Thus, there were 15 total plot responses selected with repeated to regression-based �W estimates. Second, for using the Eq.
measures ranging from 13 to 38 observations per sampling [2] �W estimates in further analyses like ANOVA, the Eq.
period. For further reference, the associated replication num- [2] �W estimators’ variability over treatment replications are
ber is concatenated to the front of the treatment combination reasonably similar to that obtained with the corresponding
code; this code uniquely identifies each selected plot (e.g., regression-based �W estimates. Note that both of the �W esti-
Treatment 121 in Year 1 is coded 1121). Note that determining mates are subject to random (measurement) errors in the
a reasonable duration estimate from the observed time re- tensiometer data, and so both are considered random vari-
sponse for each plot’s sensor, i.e., repeated measures or time ables.
series, is the purpose of this comparative analysis. Hereafter, For each plot time response, the analyses proceeded as

follows: Both methods for estimating �W were used. Using Eq.these individual records are denoted as plot time response.
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[2], �W was estimated first (hereafter, designated �trap). Then,
a time response model was selected from at least two candidate
models fit to same plot time response data. Models considered
were full- or partial-term polynomials (generally only up to
cubic terms) or splines with these same curve forms (see, e.g.,
Kimball, 1976, or Meek et al., 2001). The spline models were
fit with a nonlinear regression procedure. Model selection
considered multiple performance criteria, including residual
diagnostics. Error structure was reasonably homoscedastic.
Next, analytic integrations for the selected models were calcu-
lated to determine the �W estimates (hereafter denoted as �reg).
The first equivalence condition was examined based on three
statistical criteria. The individual distributions of �reg, �trap, and
�� � �reg � �trap along with (�reg, �trap) scatterplot were all
simultaneously examined graphically with Berg’s plot (1992).
Next, the �� mean and distribution were formally examined
with univariate statistics, i.e., a paired observation t test (see,
e.g., p. 252 in Walpole and Meyers, 1978). Finally, if the mean
for �� was not different from zero (i.e., the mean bias error is Fig. 1. The time response curve and scattergram is shown for Plot
zero), then a slope-only measurement error regression method 2423’s wetness index, y(t ). For both estimation methods, the wet-
was used to estimate the (�reg, �trap) relationship and its uncer- ness duration index is 36.5. The model has R2 � 0.974 for 31
tainty; here, the method of Kerrich (1966) was used. If the observations (P 	 0.0001). The selected regression model is two

splined line segments with a common join point; formally, it canslope is not statistically different from 1, then the two estima-
be written as follows:tors are equivalent.

To compare the variability of the two estimators over differ-
y(t) � �0.965 � 1.99 
 10�3t, t � 35.9

0.894 � 0.126(t � 35.9), t � 35.9�ent replicates, the variance ratio for each treatment was esti-
mated. The numerator was for the treatment variance for the

The gray band is the 95% confidence interval, the dashed line repre-�trap estimates. The denominator was from the corresponding
sents the model estimates, and the black circles are the wetness index�reg estimates. Probabilities for each variance ratio were esti-
values estimated by scaling the soil matric potential observations.mated. If the variance ratio was less than 1, the reciprocal was

tested. If all the ratio probabilities were reasonably insignifi-
cant (P � 0.35), then the second condition is met. All analyses the best regression approach to estimating �reg for this
were performed with SAS V8.2 (SAS Inst., 1999).1 kind of data is clearly very labor intensive.

In contrast, estimating �trap with Eq. [2] requires con-
siderably less work; it can be accomplished for all plotsResults and Discussion
in one data pass in many statistical programs or spread-

The �reg estimates require modeling y(t), the wetness sheets. As shown in Fig. 2, the corresponding �trap esti-
index, first. A simple parabola model was selected for mates were virtually identical to the �reg estimates be-
three first-year plot time responses [y(t) for Plots 1121, cause all three equivalence conditions were extremely
2121, and 3121]. Plot 1111 required a partial-term sixth well met. Notice, as shown in the Fig. 2 axial box plots,
degree polynomial. All the remaining plot time re- the central tendency and distribution of both estimators
sponses were best modeled with splines, most with just are nearly identical. The scatter is very low, and there
two phases, and three with three phases (Plots 4423, is no apparent bias. In fact, the range of the difference
4112, and 2111). The three-phase responses had a sec- box plot is very small next to that of the estimators, and
ondary rise and fall in the y(t) level after a late-season the box representing interquartile range of the differ-
rainfall. Figure 1 shows the response for Plot 2423; this ence is barely discernable. The descriptive statistics,
y(t) pattern was the only plot time response that could bias, and regression slope all meet the defined equiva-
be modeled simply by a spline with two linear segments. lence criteria extremely well. Given that incremental
The remaining y(t) plot time responses required models summations tend to average out random errors, this
with single or multiple higher-order terms and, as men- overall result is no surprise.
tioned, in some cases, additional spline segments to ob- The second criterion was also very clearly met. The
tain reasonably good interpolation. Across all selected four treatment variance ratio values were 1.17 (P � 0.451),
models, R2 ranged from 0.881 to 0.995 and had a mean 1.04 (P � 0.487), 0.85 (inverse � 1.18, P � 0.540), and
of 0.948 (median 0.952). The corresponding number of 1.07 (P � 0.479) and, hence, the variances are nearly
model parameters ranged from 3 (for the simple parabo- the same by any reasonable standard. Furthermore, no
las) to 8 (for one of the three-phase splines). Corre- overall test was needed because every individual ratio
sponding error degrees of freedom ranged from 10 to was not different from unity.
30. It is obvious, hence, that no one model fit all the plots The basic concepts used to define y(t) and �W can be
adequately. In addition, for �reg estimation, a different applied to other measurements with repeated observa-
analytical integration is required for each different re- tions for a selected sensor or site. In this study, light
gression model form. Aside from possibly being tedious, interception for the crop was also measured throughout

the season on each plot, similar to the work of Singer
(2001). In Singer and Meek (2004), a light transmittance1 The mention of a trade name is for informational purposes only

and does not imply an endorsement by the USDA-ARS. index was defined. Here again, a corresponding duration
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modeled y(t) to determine �reg. Both approaches pro-
duce very similar results, indicating that the numerical
method is preferable to the regression method for ana-
lyzing tensiometer data collected over time. With suit-
able repeated-measures data, agronomists can readily
employ the proposed method’s results directly as a vari-
able to be analyzed or as a possible covariate in other
analyses.
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